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Abstract

Virtual Reality’s expanding adoption makes the creatiomafre
interesting dynamic, interactive environments necesgaryrder

to meet the expectations of users accustomed to modern ¢empu
games. In this paper, we present initial explorations ofigishe
recently developed Functional Reactive Programming pgmado
support the creation of such environments. The FunctioratRve
Programming paradigm supports these actions by providiots t
that match both the user’s perception of the dynamics of tdw
and the underlying hybrid nature of such environments. @ant
ous functions with explicit time dependencies describelghramic
behaviors of the environment and discrete event mechamsos
vide for modifying the active behaviors of the environmedhnitial
examples show how this paradigm can be used to control dgnami
interactive Virtual Environments.

CR Categories: 1.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism |.6dhC
puting Methodologies]: Simulation and Modeling—General;

Keywords: Interactive, Dynamic Virtual Environments; Virtual
Reality; Functional Reactive Programming

1 Introduction

The creation of interactive, dynamic Virtual Environmeotstin-

ues to be an often elusive goal of Virtual Reality (VR). Even t
day, interaction in Virtual Environments (VE) is often méstied to

the user’s movement through the presented environment.ahym
cases, this movement through the world is also the only di;am
component of the environment. Modern computer games demon-
strate that it is technically possible to have interestitypamic en-
vironments, engaging players for many hours. The thousahds
man-hours employed to create such an environment is onerreas
for the difference between the quality of VR and game environ
ments in this aspect. Another reason is that VR requiresdatieon

in ways that games do not. VR also requires more general solu-
tions, making it much more difficult to program support stuares

for VR. One area, where something can be done, is system guppo
for building such dynamic, engaging environments.

The world that is created needs to be more than a static lapdsi
order to be engaging. Interaction with the world is the étadsap-
proach to enhance the environment. The typical VR intesastare
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simple direct manipulations, like moving objects. A secamethod
of increasing interest is with dynamic components, i.enghithat
change over time. This definition of dynamics covers a wideta
of things, instantaneous transitions of a light turningoffnto the
kinematics of complex mechanism of a windmill and the bedwaVi
motivations of a complex entity. Finally, interaction willgnamics
can be incorporated. Interaction with any dynamics in thedvis
desirable, not just with human-like avatars.

Creating dynamics, interaction, and their combinationhiglleng-
ing. Interaction, while not simple, is much researched. @&yn
ics can often be generated using animation techniques. Véowe
this technique is not always optimal. It typically requigeskilled
animator for generating the animations. Also, with thingshs
as physical based kinematics, the usual animation methaltls f
short and hand programming is typically used, even in andnat
houses. Moreover, interaction with dynamics is very diffiguith
traditional means. Support for interaction with classaaimation
methods is limited, again leaving the author to write evang by
hand. The best the author can generally hope for is a cloclakig
to determine how much time has passed. The area for which sup-
port has been created in VR is at a level above this, in si¢hia
complete behavior of the environment. While these systestistb
specify and control an experience, they ignore the impléatem

of the actual dynamics and interactivity.

In this paper, we introduce initial work on simplifying theeation
process, by using a recently developed programming paradig
Functional Reactive Programming [Elliott et al. 1994; Goay
et al. 2003]. Functional Reactive Programming (FRP) presid
a new approach to incorporate interaction and dynamicshege
The FRP paradigm defines the simulation in terms of contisuou
time behaviors and discrete events effecting the behaviBRP
works by generating the simulated dynamics of the worldfitse
but is expanded in our system to include interaction throongh
nipulation of values coming into the simulation from a VR -sys
tem and through events generated externally. High-levehieral
structures are programmed through switching between mgrime-
haviors, based on events occurrences. This model of simmlat
matches well the structure of interactive, dynamic VEs.

A brief overview of the support available in VR systems isyided

in the next section. Section 3 looks at how the FRP paradigrkswvo
and shows how our system, which embeds FRP in VR, is buik. Ini
tial examples showing how FRP can be used in VR for creating
interactive, dynamic VEs are presented in Section 4. Seétidis-
cusses some of these initial results of using the FRP coint®fiR.
Finally, we conclude the paper and provide some future times

for research.

2 Support for Interactive Dynamics in VR

System support for the creation of dynamic and interactivéren-
ments in VR is widely varied. Some VR systems provide support
only for hardware abstraction [Bierbaum et al. 2001; Kesstal.
2000]. The author is provided with a callback function totevri
their code, typically in C++. A number of other systems oeemt
data-flow layer for programming dynamics and interactio@m

the other end of the spectrum are a few dedicated projectssavh



aims are to introduce dynamic and/or interactive compantrnthe
world. Here, we highlight a few of the more relevant paradigm

Various groups have built systems based on a data-flow con-

cept [Blach et al. 1998; Tramberend 1999]. The largest abdiss
these data-flow systems is the series of systems which agd bas
SGI's Openlnventor [Strauss 1993], which is better knowmé&my

as VRML. In most of these cases, Scene Graphs (SG) are either

designed or retro-fitted to have an overlying layer that foendata-
flow graph. Time is typically introduced into the system bgert-
ing a clock time - or occasionally a time delta - into the dita+
each frame. Dynamics are typically created by coding thesivail
of nodes, either through a scripting language or C++, totertiee
dynamics based on the frame’s time stamp. Interaction wattics
objects is supported through the data-flow and the samesaten
of nodes.

Deligiannidis investigated using constraint networksaatecol dy-
namics in [Deligiannidis 2000]. A network of constraint ised

to specify the relationships between components. Deligifisis
system, DLoVE, had time as explicit component of the design.
Additionally, programming is performed with mathematicgh-
tax that is fairly natural. The author uses constraints ecigp the
dynamics of a system, where interaction changes the forceso
straints added for that purpose. DLOVE used a modern comistra
system and was able to simulate reasonable sized envirésmen
The DIoOVE system also introduced a limited amount of graph al
teration, allowing one to turn on and off portions of the dragt
run-time. This provides some flexibility for the author imrtes of
dynamically changing world content.

High-level behavioral languages designed for creatingrau-
tive dynamic worlds have recently become a focal point in the
Web3D community. Various papers over the topic have been pre
sented [Dachselt and Rukzio 2003; Mesing and Hellmich 2006]
The overarching goal of these has been to simplify the aeatf
interactive dynamics, particularly for non-programminggrs. In
general, the approaches have followed an early theorddiogliage

for describing behaviors and interactions in Virtual Regafrom
Zachmann [Zachmann 1996]. Both [Dachselt and Rukzio 2003]
and [Mesing and Hellmich 2006] propose extensions to the X3D
specification to include schemas that describe the highl-ldy-
namics and interactivity. These approaches typically rilesd¢he
high-level behavior of an environment, without considieradf the
actual dynamics implementation.

3 Functional Reactive Programming and its
Integration in VR

Functional Reactive Programming (FRP) is a programming
paradigm originally introduced by Conal Elliot. Elliot dgeed
FRP to allow the user to model animation in, what he felt was, a
representation closer to human perception of motion [Elkoal.
1994]. Behaviorsare defined via special time dependent continu-
ous functions. The system is capable of reacting to disenstats,

by changing the behaviors that are active.

Yampa is the current incarnation of the FRP family of langsag
and the basis for our work [Courtney 2004; Courtney et al.
2003]. Yampa is implemented in the pure functional language
Haskell [Haskell Language and Library Committee 1998]. [sam
make use of a new concept in functional programming, Arraws,
improve flexibility and assure that no “space - time” leakswc

FRP’s inherit notion of time is embedded in an implementatb
the continuous functions adreams denoted asignal Functios
(SFs) in Yampa. These Signal Functions are implementedras co
tinuations, allowing them to be “frozen” and reactivatedll®&wing
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Figure 1: FRVR’s system architecture.

the standard pure-functional mantra, SFs require the obuafiptne
functions at any time to be dependent only on the input attiimes
and time itself. However, due to the Arrow based impleméotiat
SFs can be made stateful by using a loop, where the outputof th
function is connected to the input. In our implementatios, vave
provided a controlled, encapsulated method for users takiiigs
pure nature for retrieving information from the VR world.

FRP provides numerous tools for building dynamic, intevact
VEs. The FRP style of programming is based on a building
block nature, as is typical of functional programming. R¥im
tive continuous and piece-wise continuous SFs include: &g
tegral, derivative, hold, and accumulate. Additionallyy atandard
Haskell function can be made into an SF, allowing the fullgesaf
Haskell's expressive power. The reactive portion of FRPaisedl

on events, both external and internal. Events are modedledeur-
rences, i.e. they either exist or do not exist. Throughoatptper,
we will use Eventto indicate the FRP Event type and event when
referring to the general concept. Numerous functions aadable

for the handling of events, specifically with respect to tiregam-
ples are functions that trigger an everfter X secondr at time

Y. These create simple and powerful mechanisms for the dynami
VE creator.

A series of different event triggered switches are the na@otstpro-
vides for creating instantaneous interactivity. They dao be used

to make run-time changes to the simulation’s structurdudiog
changes to the number of simulation elements. Switchedein t
basic form, execute a specified SF until a specified eventdrepp
at which point they switch into a secondary SF. The both SBs ma
contain any set or tree of behaviors underneath it. The waner-
sions of the switch, like the recursive switch, simplify gesaand
the special kswitch makes it possible to take a “snapshathdbF,
capturing its current state. Using continuations, a snatpshthe
current behavior can be passed around as another pieceacirttht
reactivated at a later point. This makes a very powerful fool
the user. Combined with SFs that compose other SFs in paralle
dynamic sets of SFs can be defined and modified at run-time.

We have developed a component based architecture for imcorp
rating FRP in VR [Blom and Beckhaus 2007]. The structure of
the resulting system can be seen in Figure 1; a system we have
named FRVR. Yampa is used as a component in the system to im-
plements the dynamics and interactive dynamics of the systde

VR system remains in charge of the main render loop and alfief t
VR hardware abstraction. In the system presented, VR Juggle
used. Values are exchanged between the two componentmsyste
through a special tagged shared memory. The shared memory is
implemented as a service accessible from both sides. A dégon
plementation methodology is easily conceivable, couptirvggFRP
system tightly to the system or SG. In this method, each sitiaunl
element would have a call into a FRP simulation. This has abt y
be pursued in order to make the implementation portablesad/&
systems and groups.



4 Creating Interactive, Dynamic VEs

In this section, we present an initial look at implementinterac-
tive, dynamic Virtual Environments with FRP. There are a hum
ber of possible approaches to incorporating an FRP sinonlati
VR. The most basic difference lies in the ownership of theies)
i.e. if FRP generates the values itself or if it is only useihtye-
mentally change values from the VR system and return theedlte
values after calculation. The example given here demdsstian
implementation of autonomous entities in FRVR. FRP costtioé
entities’ dynamics completely. Extending the example, emadn-
strate how interaction with such entities can be perfornssagthe
FRVR system.

4.1 Boids

Boids are one of the most common place methods for the inclu-
sion of interactive dynamics in VR systems. The idea, inioed

by Reynolds [Reynolds 1987], is today used in the gaming com-
munity for the implementations of behaviors of various typel-
tonomous entities [Millington 2006]. This “steering befa\ ap-
proach, builds the entities’ behavior by combining simplées,
where each rule contributes a desired acceleration of tiitg.efwo

of the most common rules, separation and collision avoieacre-

ate an interactive dynamics in the environment. The restuétecel-
eration parameters are naturally suited to the FRP systietdjng
positions and orientations for the entities using the bnilbtegral
calculus. The concept of combining various basic funclitiea

is implemented in FRP, by having each function as its own &ign
Function (SF). Each of the basic functionalities is exedutgen-
erating the component desired accelerations. These arkinedn
and the integral calculus is evaluated.

ground boids

User T
position proximity
N fly boids
Boid0
Bo.idX
bread-
crumbs isFood

Figure 2: This diagram illustrates the code structure talathe

dynamics and interaction for the user interactive Boids.tt&b
lines show initialization inputs and the shaded boxes stamgsses
to the shared memory for data.

new basis behaviors dependent on which are appropriatatahti
ment. This differs from the standard approach, where cimtgai f

statements surround sub-behaviors or multipliers areosegro to
eliminate sub-behaviors’ effects.

4.2 User Interaction

A Boid is implemented as an SF itself. The FRP system creates pqding user interaction can often be simply achieved usiR§'S

a list of Boid SFs and evaluates them every frame. Below is an
excerpt of code that controls a single Boid within the groDue

to the word wrapping here, its appearance is a bit more diffiou
read than normal. In general, the special Arrow syntax stbess
data flow, from right to left through the arrows. In the firsttsen

of the code, steering inputs from the basic steering behaice
generated. After combining the list of steering inputs, diesired
linear acceleration is used to find the new position. Origortas
handled similarly, using quaternion integration.

boid :: Boid — SF (Point3f,
boid init_boid = proc (target,
rec
cohesive<— group.cohesion—<
(boid, map (coordPosition .boidCoord) boidist)
separate<— separategroup <
(boid, map (coordPosition .boidCoord) boidist)
dir_travel <— face3D (Quat 0 0 0 1)<
(boid, velocity)
steeringparams<— arr accumulatesteering—<
(weightSteering separate) 0.2) :
(weightSteering cohesive) 0.2) :
dir_travel : []

[Boid], Point3f) Coord3ff
boidlist, center)—> do

velocity <— arr (boidVelocity initial_boid+) <<<
integral < steeringAccelDirection steeringarams

position <— (transPosFrom initialboid) <<
integral < velocity

A library of basis functionalities has been created andediffy
flocking behaviors can be specified simply by exchanging the a
tive SFs. The more general implementation allows the SF®to b
combined using parallel SFs. This enables the Boid’s benalvi
goals to be altered at run-time. For instance, a highei-katem
controlling the priorities for the entity can simply switohand out

reactive nature. Here, we will investigate how the Boid®&tgm
can be extended to include interaction with the user spade T
interaction is achieved through the user’s presence djrenflu-
encing the behavior of the birds. An example of classical V&R m
nipulation can be found in the Newton’s Cradle example diesdr
in [Blom and Beckhaus 2007].

In [Reynolds 2000] Reynolds describes a demonstrationrpnog

for a game console, “Pigeons in the Park,” where the userdcoul
steer an RC car into a group of pigeons feeding on the ground to
make them take off and fly around. This high level behaviongea
was implemented using a Finite State Machine in Reynoldesys
where each state’s behavior was defined by a different sedg§ b
behaviors. Here, a modified version of the example, usingsbes
presence in the world, can be implemented using FRVR.

To program this is in FRP, we first note that the Boids now hese t
different sets of behaviors, feeding on the ground and flyifg-
suming that both these behaviors can be described usiragicas
and combinations of the standard steering algorithms, ndepen-
dent behaviors are created, one for flying and one for thengtou
The program of each behavior follows roughly that of Sectidn

With the two behaviors programmed, we then need the comditio
that define which behavior is currently active. In this cdbe,ap-
proaching user causes the birds to fly away. An event, based on
user proximity, can be used. As birds have a tendency to ssase
group and all fly away, a single bird taking flight, can be us&d f
making the whole group fly. The reason for the birds returrheo t
ground is not obvious, but we will assume that a feeding dodi

can be triggered by the user, for instance by placing somadbre
on the ground. In this case, the user interaction with a sargn
object causes the event that triggers the behavior change.



Figure 2 provides a graphical representation of how the rnarag language for some of the high level behavior schemas deséliop
is structured for such a Boids implementation. Both of thédBo VR previously would be advantageous, as it provides tookstt
behaviors are shown inside of a switch. When the ground Boids the low level dynamic level and system wide behavioral level
are active, a special SF, inside of each Boid, detects thaemity

of the user, retrieving the user’s position from the sharednary. References
If a fly event is generated by one individual Boid, the switdll w
switch into thefly behavior. In the description above, we ignored
;gﬁggeBEi%igsehg VS ots(,)itggrrwn i?,i?hzovr;iﬁéerﬂté\fg(?giggizmm form for Virtual Reality Application Development. IRroceed-
initialization of the other behavior. THey Boidsreacts to a single ings of the Virtual Reality 2001 conference (VR'089.
external event asserted by the VR side, breadcrumbs, asup.gro BLACH, R., LANDAUER, J., ROSCH, A., AND SIMON, A. 1998.
This causes a switch back into tigeound Boidsbehavior. The A Highly Flexible Virtual Reality System.Future Generation
transitions between methods have to be handled specidiliy.Céin Computer Systems 13-4, 167—-178.

be achieved by writing the appropriate functionalities awitching . .
BLowm, K. J., AND BECKHAUS, S. 2007. Functional Reactive

into them between behaviors. g ’ .

Virtual Reality. InShort Paper Proceedings of the IPT/Euro-
Graphics workshop on Virual Environments (IPT-EGVE '07)
EuroGraphics.

BIERBAUM, A., JUST, C., HARTLING, P., MEINERT, K., BAKER,
A., AND CRUZ-NEIRA, C. 2001. VR Juggler: A Virtual Plat-

5 Results and Discussion

In order to test the performance of FRP, we have compared the COURTNEY, A., NILSSON, H., AND PETERSON J. 2003. The

FRVR implementation of Boids with that of a traditional C+#-i gflggﬁaﬁrcﬁj& IMCM SIGPLAN Haskell Workshop\CM
plementation. The programs were run with a basic set of 1000 ' '

Boids, a number that created a significant system load on a 2.1 CouRrTNEY, A. 2004. Modeling User Interfaces in a Functional
Ghz P4. In this test, the FRVR system performed 30% better  Language PhD thesis, Yale University.

than the C++ implementation. While we had expected compara- .

ble performance from FRP, an improvement of this size with th DACHSELT, R., AND Rukzio, E. 2003. Behavior3d: An XML-
overhead of the shared memory exchange was unanticipated. W  Based Framework for 3D Graphics Behavior.Rroceedings of
suspect that this difference is due to two factors. The clampi the ACM Web3D 2003 Conferend&CM Press.

optimized Haskell code the FRP code performs exceeding well | gianniDIS. L. 2000. DLoVe: A specification paradigm

Haskell compiles to quick code, performing almost as weCas,

as evident in the comparison in the “Computer Language $hdot
[http://shootout.alioth.debian.org/]. This is partyatlo to Haskell
being a “lazy evaluation language,” which roughly means dimdy
required values are calculated. The C++ implementationceded
using Object Oriented principles that may have played afsignt
role in the efficiency of the code, particularly due to vittfuaction
calls. In general, we expect speeds of FRVR code to appragima
those of native low-level languages.

6 Conclusion

In this paper we have shown preliminary examples of the icnreat
of dynamic, interactive Virtual Environments, using theaetly
developed paradigm Functional Reactive Programming. By em
bedding FRP in a VR system, such as VR Juggler or AVANGO, the
programmer of the environments behaviors can approach EesV

a hybrid system of continuous functions and discrete evemte
continuous functions define the time dependant aspecthardis-
crete events are events to which the system reacts. Theogedel
Functional Reactive Virtual Reality system delivers theexjs nec-
essary for VR systems, matching C++ implementations of \seha
iors, while providing the continuous reactive programmafigred

by FRP. We feel the combined system presents the potentals®
the development of interactive, dynamic environments aogem
VR in the direction of creating true interactive experience

Our continuing work with FRVR will further explore the poten
tials of the FRP paradigm for controlling dynamic, intereeten-
vironments. The FRP paradigm is well suited to higher-lewsi-
cepts, such as interactive storytelling. We are currentiykimg
on a building a more complex world to explore FRVR’s usafilit
Another direction of interest is work on making the authevirk
easier. To this end, we are working on developing a graplieal
terface for FRP coding. Finally, using FRVR as an implemigoa

for designing distributed VR applications for single or tiple
users PhD thesis, Tufts University.
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