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Abstract

Virtual Reality’s expanding adoption makes the creation ofmore
interesting dynamic, interactive environments necessaryin order
to meet the expectations of users accustomed to modern computer
games. In this paper, we present initial explorations of using the
recently developed Functional Reactive Programming paradigm to
support the creation of such environments. The Functional Reactive
Programming paradigm supports these actions by providing tools
that match both the user’s perception of the dynamics of the world
and the underlying hybrid nature of such environments. Continu-
ous functions with explicit time dependencies describe thedynamic
behaviors of the environment and discrete event mechanismspro-
vide for modifying the active behaviors of the environment.Initial
examples show how this paradigm can be used to control dynamic,
interactive Virtual Environments.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism I.6.0 [Com-
puting Methodologies]: Simulation and Modeling—General;
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1 Introduction

The creation of interactive, dynamic Virtual Environmentscontin-
ues to be an often elusive goal of Virtual Reality (VR). Even to-
day, interaction in Virtual Environments (VE) is often restricted to
the user’s movement through the presented environment. In many
cases, this movement through the world is also the only dynamic
component of the environment. Modern computer games demon-
strate that it is technically possible to have interesting,dynamic en-
vironments, engaging players for many hours. The thousandsof
man-hours employed to create such an environment is one reason
for the difference between the quality of VR and game environ-
ments in this aspect. Another reason is that VR requires interaction
in ways that games do not. VR also requires more general solu-
tions, making it much more difficult to program support structures
for VR. One area, where something can be done, is system support
for building such dynamic, engaging environments.

The world that is created needs to be more than a static landscape in
order to be engaging. Interaction with the world is the classical ap-
proach to enhance the environment. The typical VR interactions are
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simple direct manipulations, like moving objects. A secondmethod
of increasing interest is with dynamic components, i.e. things that
change over time. This definition of dynamics covers a wide variety
of things, instantaneous transitions of a light turning on/off to the
kinematics of complex mechanism of a windmill and the behavioral
motivations of a complex entity. Finally, interaction withdynamics
can be incorporated. Interaction with any dynamics in the world is
desirable, not just with human-like avatars.

Creating dynamics, interaction, and their combination is challeng-
ing. Interaction, while not simple, is much researched. Dynam-
ics can often be generated using animation techniques. However,
this technique is not always optimal. It typically requiresa skilled
animator for generating the animations. Also, with things such
as physical based kinematics, the usual animation methods fall
short and hand programming is typically used, even in animation
houses. Moreover, interaction with dynamics is very difficult with
traditional means. Support for interaction with classicalanimation
methods is limited, again leaving the author to write everything by
hand. The best the author can generally hope for is a clock signal
to determine how much time has passed. The area for which sup-
port has been created in VR is at a level above this, in steering the
complete behavior of the environment. While these systems help to
specify and control an experience, they ignore the implementation
of the actual dynamics and interactivity.

In this paper, we introduce initial work on simplifying the creation
process, by using a recently developed programming paradigm,
Functional Reactive Programming [Elliott et al. 1994; Courtney
et al. 2003]. Functional Reactive Programming (FRP) provides
a new approach to incorporate interaction and dynamics together.
The FRP paradigm defines the simulation in terms of continuous
time behaviors and discrete events effecting the behaviors. FRP
works by generating the simulated dynamics of the world itself,
but is expanded in our system to include interaction throughma-
nipulation of values coming into the simulation from a VR sys-
tem and through events generated externally. High-level behavioral
structures are programmed through switching between running be-
haviors, based on events occurrences. This model of simulation
matches well the structure of interactive, dynamic VEs.

A brief overview of the support available in VR systems is provided
in the next section. Section 3 looks at how the FRP paradigm works
and shows how our system, which embeds FRP in VR, is built. Ini-
tial examples showing how FRP can be used in VR for creating
interactive, dynamic VEs are presented in Section 4. Section 5 dis-
cusses some of these initial results of using the FRP conceptin VR.
Finally, we conclude the paper and provide some future directions
for research.

2 Support for Interactive Dynamics in VR

System support for the creation of dynamic and interactive environ-
ments in VR is widely varied. Some VR systems provide support
only for hardware abstraction [Bierbaum et al. 2001; Kessler et al.
2000]. The author is provided with a callback function to write
their code, typically in C++. A number of other systems create a
data-flow layer for programming dynamics and interactions.On
the other end of the spectrum are a few dedicated projects, whose



aims are to introduce dynamic and/or interactive components to the
world. Here, we highlight a few of the more relevant paradigms.

Various groups have built systems based on a data-flow con-
cept [Blach et al. 1998; Tramberend 1999]. The largest classof
these data-flow systems is the series of systems which are based on
SGI’s OpenInventor [Strauss 1993], which is better known tomany
as VRML. In most of these cases, Scene Graphs (SG) are either
designed or retro-fitted to have an overlying layer that forms a data-
flow graph. Time is typically introduced into the system by insert-
ing a clock time - or occasionally a time delta - into the data-flow
each frame. Dynamics are typically created by coding the internal
of nodes, either through a scripting language or C++, to create the
dynamics based on the frame’s time stamp. Interaction with static
objects is supported through the data-flow and the same extension
of nodes.

Deligiannidis investigated using constraint networks to control dy-
namics in [Deligiannidis 2000]. A network of constraint is used
to specify the relationships between components. Deligiannidis’s
system, DLoVE, had time as explicit component of the design.
Additionally, programming is performed with mathematicalsyn-
tax that is fairly natural. The author uses constraints to specify the
dynamics of a system, where interaction changes the forces on con-
straints added for that purpose. DLoVE used a modern constraint
system and was able to simulate reasonable sized environments.
The DloVE system also introduced a limited amount of graph al-
teration, allowing one to turn on and off portions of the graph at
run-time. This provides some flexibility for the author in terms of
dynamically changing world content.

High-level behavioral languages designed for creating interac-
tive dynamic worlds have recently become a focal point in the
Web3D community. Various papers over the topic have been pre-
sented [Dachselt and Rukzio 2003; Mesing and Hellmich 2006].
The overarching goal of these has been to simplify the creation of
interactive dynamics, particularly for non-programming users. In
general, the approaches have followed an early theoreticallanguage
for describing behaviors and interactions in Virtual Reality from
Zachmann [Zachmann 1996]. Both [Dachselt and Rukzio 2003]
and [Mesing and Hellmich 2006] propose extensions to the X3D
specification to include schemas that describe the high-level dy-
namics and interactivity. These approaches typically describe the
high-level behavior of an environment, without consideration of the
actual dynamics implementation.

3 Functional Reactive Programming and its
Integration in VR

Functional Reactive Programming (FRP) is a programming
paradigm originally introduced by Conal Elliot. Elliot designed
FRP to allow the user to model animation in, what he felt was, a
representation closer to human perception of motion [Elliott et al.
1994]. Behaviorsare defined via special time dependent continu-
ous functions. The system is capable of reacting to discreteevents,
by changing the behaviors that are active.

Yampa is the current incarnation of the FRP family of languages
and the basis for our work [Courtney 2004; Courtney et al.
2003]. Yampa is implemented in the pure functional language,
Haskell [Haskell Language and Library Committee 1998]. Yampa
make use of a new concept in functional programming, Arrows,to
improve flexibility and assure that no “space - time” leaks occur.

FRP’s inherit notion of time is embedded in an implementation of
the continuous functions asstreams, denoted asSignal Functions
(SFs) in Yampa. These Signal Functions are implemented as con-
tinuations, allowing them to be “frozen” and reactivated. Following

Figure 1: FRVR’s system architecture.

the standard pure-functional mantra, SFs require the output of the
functions at any time to be dependent only on the input at thattime
and time itself. However, due to the Arrow based implementation,
SFs can be made stateful by using a loop, where the output of the
function is connected to the input. In our implementation, we have
provided a controlled, encapsulated method for users to break this
pure nature for retrieving information from the VR world.

FRP provides numerous tools for building dynamic, interactive
VEs. The FRP style of programming is based on a building
block nature, as is typical of functional programming. Primi-
tive continuous and piece-wise continuous SFs include: e.g. in-
tegral, derivative, hold, and accumulate. Additionally, any standard
Haskell function can be made into an SF, allowing the full usage of
Haskell’s expressive power. The reactive portion of FRP is based
on events, both external and internal. Events are modelled as occur-
rences, i.e. they either exist or do not exist. Throughout the paper,
we will useEventto indicate the FRP Event type and event when
referring to the general concept. Numerous functions are available
for the handling of events, specifically with respect to time. Exam-
ples are functions that trigger an eventafter X secondsor at time
Y . These create simple and powerful mechanisms for the dynamic
VE creator.

A series of different event triggered switches are the main tools pro-
vides for creating instantaneous interactivity. They can also be used
to make run-time changes to the simulation’s structure, including
changes to the number of simulation elements. Switches, in their
basic form, execute a specified SF until a specified event happens,
at which point they switch into a secondary SF. The both SFs may
contain any set or tree of behaviors underneath it. The various ver-
sions of the switch, like the recursive switch, simplify usage, and
the special kswitch makes it possible to take a “snapshot” ofan SF,
capturing its current state. Using continuations, a snapshot of the
current behavior can be passed around as another piece of data and
reactivated at a later point. This makes a very powerful toolfor
the user. Combined with SFs that compose other SFs in parallel,
dynamic sets of SFs can be defined and modified at run-time.

We have developed a component based architecture for incorpo-
rating FRP in VR [Blom and Beckhaus 2007]. The structure of
the resulting system can be seen in Figure 1; a system we have
named FRVR. Yampa is used as a component in the system to im-
plements the dynamics and interactive dynamics of the system. The
VR system remains in charge of the main render loop and all of the
VR hardware abstraction. In the system presented, VR Juggler is
used. Values are exchanged between the two components systems
through a special tagged shared memory. The shared memory is
implemented as a service accessible from both sides. A second im-
plementation methodology is easily conceivable, couplingthe FRP
system tightly to the system or SG. In this method, each simulation
element would have a call into a FRP simulation. This has not yet
be pursued in order to make the implementation portable across VR
systems and groups.



4 Creating Interactive, Dynamic VEs

In this section, we present an initial look at implementing interac-
tive, dynamic Virtual Environments with FRP. There are a num-
ber of possible approaches to incorporating an FRP simulation in
VR. The most basic difference lies in the ownership of the values,
i.e. if FRP generates the values itself or if it is only used toincre-
mentally change values from the VR system and return the altered
values after calculation. The example given here demonstrates an
implementation of autonomous entities in FRVR. FRP controls the
entities’ dynamics completely. Extending the example, we demon-
strate how interaction with such entities can be performed using the
FRVR system.

4.1 Boids

Boids are one of the most common place methods for the inclu-
sion of interactive dynamics in VR systems. The idea, introduced
by Reynolds [Reynolds 1987], is today used in the gaming com-
munity for the implementations of behaviors of various types au-
tonomous entities [Millington 2006]. This “steering behavior” ap-
proach, builds the entities’ behavior by combining simple rules,
where each rule contributes a desired acceleration of the entity. Two
of the most common rules, separation and collision avoidance, cre-
ate an interactive dynamics in the environment. The resultant accel-
eration parameters are naturally suited to the FRP system, yielding
positions and orientations for the entities using the builtin integral
calculus. The concept of combining various basic functionalities
is implemented in FRP, by having each function as its own Signal
Function (SF). Each of the basic functionalities is executed, gen-
erating the component desired accelerations. These are combined
and the integral calculus is evaluated.

A Boid is implemented as an SF itself. The FRP system creates
a list of Boid SFs and evaluates them every frame. Below is an
excerpt of code that controls a single Boid within the group.Due
to the word wrapping here, its appearance is a bit more difficult to
read than normal. In general, the special Arrow syntax showsthe
data flow, from right to left through the arrows. In the first section
of the code, steering inputs from the basic steering behaviors are
generated. After combining the list of steering inputs, thedesired
linear acceleration is used to find the new position. Orientation is
handled similarly, using quaternion integration.

bo id : : Boid −> SF ( Po in t3 f , [ Boid ] , P o i n t 3 f ) Coord3f f
bo id i n i t b o i d = proc ( t a r g e t , b o i d l i s t , c e n t e r )−> do

re c
c ohe s i ve<− g roup c ohe s ion−<

( boid , map ( c o o r d P o s i t i o n . bo idCoord ) b o i dl i s t )
s e p a r a t e<− s e p a r a t eg r o u p −<

( boid , map ( c o o r d P o s i t i o n . bo idCoord ) b o i dl i s t )
d i r t r a v e l <− face3D ( Quat 0 0 0 1)−<

( boid , v e l o c i t y )
s t e e r i n g p a r a m s<− arr a c c u m u l a t es t e e r i n g−<

( w e i g h t S t e e r i n g s e p a r a t e ) 0 . 2 ) :
( w e i g h t S t e e r i n g c ohe s i ve ) 0 . 2 ) :
d i r t r a v e l : [ ]

v e l o c i t y <− arr ( b o i d V e l o c i t y i n i t i a l b o i d +) <<<

i n t e g r a l −< s t e e r i n g A c c e l D i r e c t i o n s t e e r i n gp a r a m s
p o s i t i o n <− ( t ransPosFrom i n i t i a lb o i d ) <̂<

i n t e g r a l −< v e l o c i t y

A library of basis functionalities has been created and differing
flocking behaviors can be specified simply by exchanging the ac-
tive SFs. The more general implementation allows the SFs to be
combined using parallel SFs. This enables the Boid’s behavioral
goals to be altered at run-time. For instance, a higher-level system
controlling the priorities for the entity can simply switchin and out

Figure 2: This diagram illustrates the code structure to handle the
dynamics and interaction for the user interactive Boids. Dotted
lines show initialization inputs and the shaded boxes show accesses
to the shared memory for data.

new basis behaviors dependent on which are appropriate at that mo-
ment. This differs from the standard approach, where controlling if
statements surround sub-behaviors or multipliers are set to zero to
eliminate sub-behaviors’ effects.

4.2 User Interaction

Adding user interaction can often be simply achieved using FRP’s
reactive nature. Here, we will investigate how the Boids algorithm
can be extended to include interaction with the user space. The
interaction is achieved through the user’s presence directly, influ-
encing the behavior of the birds. An example of classical VR ma-
nipulation can be found in the Newton’s Cradle example described
in [Blom and Beckhaus 2007].

In [Reynolds 2000] Reynolds describes a demonstration program
for a game console, “Pigeons in the Park,” where the user could
steer an RC car into a group of pigeons feeding on the ground to
make them take off and fly around. This high level behavior change
was implemented using a Finite State Machine in Reynolds system,
where each state’s behavior was defined by a different set of basis
behaviors. Here, a modified version of the example, using theuser’s
presence in the world, can be implemented using FRVR.

To program this is in FRP, we first note that the Boids now have two
different sets of behaviors, feeding on the ground and flying. As-
suming that both these behaviors can be described using variations
and combinations of the standard steering algorithms, two indepen-
dent behaviors are created, one for flying and one for the ground.
The program of each behavior follows roughly that of Section4.1.

With the two behaviors programmed, we then need the conditions
that define which behavior is currently active. In this case,the ap-
proaching user causes the birds to fly away. An event, based on
user proximity, can be used. As birds have a tendency to scareas a
group and all fly away, a single bird taking flight, can be used for
making the whole group fly. The reason for the birds return to the
ground is not obvious, but we will assume that a feeding condition
can be triggered by the user, for instance by placing some bread
on the ground. In this case, the user interaction with a secondary
object causes the event that triggers the behavior change.



Figure 2 provides a graphical representation of how the program
is structured for such a Boids implementation. Both of the Boids
behaviors are shown inside of a switch. When the ground Boids
are active, a special SF, inside of each Boid, detects the proximity
of the user, retrieving the user’s position from the shared memory.
If a fly event is generated by one individual Boid, the switch will
switch into thefly behavior. In the description above, we ignored
that the Boids have to remain consistent, requiring that thevalues
for the Boids, e.g. position in the world, have to be handed over for
initialization of the other behavior. Thefly Boidsreacts to a single
external event asserted by the VR side, breadcrumbs, as a group.
This causes a switch back into theground Boidsbehavior. The
transitions between methods have to be handled specially. This can
be achieved by writing the appropriate functionalities andswitching
into them between behaviors.

5 Results and Discussion

In order to test the performance of FRP, we have compared the
FRVR implementation of Boids with that of a traditional C++ im-
plementation. The programs were run with a basic set of 1000
Boids, a number that created a significant system load on a 2.1
Ghz P4. In this test, the FRVR system performed 30% better
than the C++ implementation. While we had expected compara-
ble performance from FRP, an improvement of this size with the
overhead of the shared memory exchange was unanticipated. We
suspect that this difference is due to two factors. The compiler
optimized Haskell code the FRP code performs exceeding well.
Haskell compiles to quick code, performing almost as well asC++,
as evident in the comparison in the “Computer Language Shootout”
[http://shootout.alioth.debian.org/]. This is partially do to Haskell
being a “lazy evaluation language,” which roughly means that only
required values are calculated. The C++ implementation wascoded
using Object Oriented principles that may have played a significant
role in the efficiency of the code, particularly due to virtual function
calls. In general, we expect speeds of FRVR code to approximate
those of native low-level languages.

6 Conclusion

In this paper we have shown preliminary examples of the creation
of dynamic, interactive Virtual Environments, using the recently
developed paradigm Functional Reactive Programming. By em-
bedding FRP in a VR system, such as VR Juggler or AVANGO, the
programmer of the environments behaviors can approach the VE as
a hybrid system of continuous functions and discrete events. The
continuous functions define the time dependant aspects and the dis-
crete events are events to which the system reacts. The developed
Functional Reactive Virtual Reality system delivers the speeds nec-
essary for VR systems, matching C++ implementations of behav-
iors, while providing the continuous reactive programmingoffered
by FRP. We feel the combined system presents the potential toease
the development of interactive, dynamic environments and move
VR in the direction of creating true interactive experiences.

Our continuing work with FRVR will further explore the poten-
tials of the FRP paradigm for controlling dynamic, interactive en-
vironments. The FRP paradigm is well suited to higher-levelcon-
cepts, such as interactive storytelling. We are currently working
on a building a more complex world to explore FRVR’s usability.
Another direction of interest is work on making the author’swork
easier. To this end, we are working on developing a graphicalin-
terface for FRP coding. Finally, using FRVR as an implementation

language for some of the high level behavior schemas developed in
VR previously would be advantageous, as it provides tools atboth
the low level dynamic level and system wide behavioral level.
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